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On the instability of viscous flow in a rapidly 
rotating pipe 

By T. J. PEDLEYt 
Department of Mechanics, The Johns Hopkins University 

(Received 3 April 1968) 

The stability of almost fully developed viscous flow in a rotating pipe is con- 
sidered. In cylindrical polar co-ordinates (r ,  #, z )  this flow has the velocity 
components 

{%0(1), Qr[l -I- O(e)], K[l- r2/'6-I- 0(1)1},$ 
where E = Wo/2!2ro, and is bounded externally by the rigid cylinder r = ro, which 
rotates about its axis with angular velocity Q. In  the limit of small E ,  the dis- 
turbance equations can be solved in terms of Bessel functions, and it is shown 
that, in that limit, the flow is unstable for Reynolds numbers R = Woro/v greater 
than R, M 82-9. The unstable disturbances take the form of growing spiral waves, 
which are stationary relative to the rotating cylinder, and the critical disturbance 
at  R = R, has azimuthal wave-number 1 and axial wavelength 27rr0/e. Further- 
more, it is shown that the most rapidly growing disturbance for R > R, has an 
azimuthal wave-number which increases with R. Some of the problems involved 
in testing the results by experiment are discussed, and a possible application to 
the theory of vortex breakdown is mentioned. In  an appendix this instability is 
shown to be an example of inertial instability. 

1. Introduction 
It was shown in Pedley (1968), that a cylindrically symmetric shear flow of 

an incompressible fluid, such as Poiseuille flow in a circular pipe, is unstable to 
infinitesimal, inviscid disturbances when it is subjected to a rapid, almost rigid, 
rotation about its axis. The velocity components in cylindrical polar co-ordinates 
( r ,  r$, x )  of the specific flow discussed there are 

(0, Qrdr/ro), Kf(dro)}, (1.1) 

where f(z) is a function of order one and g(x) = 1 + O(e2).t It is bounded ex- 
ternally by the rigid cylinder r = ro and internally by either the axis r = 0 or an- 
other rigid cylinder r = rl < ro. This flow is unstable for sufficiently small values of 

e = W0/2Qr,, (1.2) 

iff'(x) is non-zero for some x in the range (rl /ro, 1). The disturbances to which the 
flow is unstable are stationary relative to a frame of reference rotating with 

Present address : Department of Aeronautics, Imperial College, London, S.W. 7. 
1 The symbols 0, o have their usual meanings and refer to the liniit F 3 0 except where 

explicitly described otherwise. 
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angular velocity 0. They are also non-axisymmetric with azimuthal wave- 
number n, say, and with axial wave-number k such that kr, = @, where p is any 
number such that P[p-f’(z)/x] is negative for some x in (TJT,, 1). The flow is 
clearly stable to axisymmetric disturbances, from the generalization of Ray- 
leigh’s criterion given by Howard & Gupta (1962) for swirling flow with axial 
shear. The non-axisymmetric instability is, nevertheless, of the same dynamical 
nature as the axisymmetric instability associated with violation of Rayleigh’s 
criterion, often called inertial instability (see appendix). In the particular case of 
Poiseuille flow in a pipe, for whichf(z) = 1 - x2 and the inner boundary is x = 0, 
i t  was shown in Pedley (1968) that the most rapidly growing disturbances are 
those for which 

In this paper, we examine the instability of such rotating Poiseuille flow 
(slightly generalized) in a viscous fluid. The undisturbed velocity components in 
the q5- and 2-directions are given by (1.1) and by 

= - 1 and In1 JCO.  

j(.) = 1 --x2+0(&), g(x) = l+O(El’-ae), (1.3) 

where a, > 0, a2 > 0 ,  and the pipe r = r, rotates about its axis with angular 
velocity a. In order that the postulated basic flow should itself be a steady 
solution of the Navier-Stokes equations, a radial velocity component U must 
in general be included, say U = ea1W0h(x), where h(x) = O(1) as €-to. 

Experience with other problems in hydrodynamic stability suggests that the 
type of instability found in Pedley (1968) for an inviscid fluid will still be manifest 
in a viscous fluid if the Reynolds number, 

R = Woro/v, (1.4) 

is sufficiently large, where v is the kinematic viscosity of the fluid. Hence we 
expect there to be a critical Reynolds number, R = R,, for which the flow is 
neutrally stable. For a given Reynolds number greater than R,, however, it is 
unlikely that the most rapidly growing disturbance has an infinite azimuthal 
wave-number n; rather, we expect that it will occur for a specific, finite value of 
n. Both these expectations are confirmed below. 

Clearly, the presence of viscosity may also introduce a totally different type of 
instability at  large Reynolds numbers, associated perhaps with a ‘ critical layer ’ 
in which the fluid velocity is equal to the phase velocity of the disturbance. Here, 
however, we shall ignore this possibility, since such modes of instability are 
unlikely to occur at  Reynolds numbers as low as the value ultimately obtained 
for R,. 

It happens that the solution of the problem can be obtained in closed form: 
the value of R,, and the details of the most rapidly growing disturbance for 
R > R,, are given by the roots of a certain transcendental equation, involving 
Bessel functions of complex argument. The analytical solution is presented in 
§$2-4 below, and the numerical results, guided by a further analytical theorem, 
are obtained in 0 5. 

In $6  the results are evaluated in the light of some experiments, reported by 
other authors, with which they appear to conflict. The present theory is shown 
to be inapplicable to those experiments, and some of the problems to be overcome 
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in a future experiment are discussed in detail. The section concludes with some 
remarks on the possible relevance of this type of hydrodynamic instability to the 
theory of vortex breakdown. 

2. Reduction of the perturbation equations 
If we asmme infinitesimal perturbations to  the basic flow given by (1.1) and 

(1.3), we can linearize the equations of motion, and may restrict our attention 
to a single Fourier component of the perturbation velocity (C, v", G) and pressure p .  
These quantities may therefore be written: 

( & C % P )  = Uo[(l/X)Y(X), v(x), 4s); 2P~~oP(X)lexP [ i (d+nQ,+kz)l ,  (2.1) 

where z = r/ro, k is real, n is an integer (which with no loss of generality we may 
take to be non-negative), p is the uniform density of the fluid, and U, is a scaling 
factor which is arbitrary except in so far that it must be much smaller than Wo. 

n2 0. 

2Q 2 2  

Let us define the following non-dimensional quantities : 

, w ( x )  = -+ $ng(x) + eaf(x). (2.2) a = kr,, s(z) = -+a2 

The radial, azimuthal, and axial equations of motion, and the equation of con- 
tinuity, now become respectively 

2inv iwy - xgv +€'+"l[Xh(Y/X)' + yU] = - xp' + R x '  

R 
Y ~ W W  + ~f' ~ + e'+alhW' = - imp + 
X 

(2.5) 

y' + inv + iaxw = 0,  (2.6) 

where a prime denotes differentiation with respect to x. The parameters e and R 
are defined by (1.2) and (1.4) respectively; so far no assumption has been made 
about their orders of magnitude. 

Boundary conditions must be applied to the perturbation quantities on the 
axis T = 0 and on the rigid boundary T = T,. The no-slip condition on T = yo 

requires that all components of the perturbation velocity should be zero there; 
that is, 

The condition at  r = 0 is that no physical quantity should be singular a t  that 
point, and is unaffected by the presence or absence of viscosity. This can be 
expressed by means of the following set of conditions, which are not necessarily 
independent (see Batchelor & Gill 1962): 

( 2 . 7 )  y( 1) = v( 1) = w( 1) = 0. 

(2.8) 

7-2  

w(0) =p(O) = 0 for n + 0, 

y(0) = y'(0) = v(0) = 0 for n + 1,  
y(0) = 0, y'(0) = -inv(O) for n = 1. 
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(Note that in Pedley (1968), 3, it was stated that y = o(x) as x -+ 0, which is 
wrong if n = 1. In  that case it should be replaced by y = o(1) as x+O; thus 
unstable disturbances with n = 1 are not prohibited.) The set of equations 
and boundary conditions (2.3)-(2.8) is of the sixth-order, and represents an eigen- 
value problem for the quantity r: if for certain values of n and a there is a solution 
for which CT has a negative imaginary part, then the flow is unstable to the 
disturbance defined by those values. 

Now we shall make approximations based on the assumption that E is small. 
First, we replacef(x) and g(x) by their functional forms (1.3). We are restricting 
our attention to the type of instability described in Pedley (1968), where only 
those disturbances for which n is non-zero and la/nl is small are unstable; so 
next we set a = cpn, where p is of order one. Thus 

say, where Ts is a constant, and the continuity equation (2.6) becomes 

y' + inv + iepnxw = 0. (2.10) 

If we eliminate p from (2.3)-(2.5), if we neglect o(1) times the magnitude of 
each term, whatever that magnitude is, and if we also ignore the terms con- 
taining h(x)  (which can easily be justified aposteriori, since a, > 0 ) ,  those equa- 
tions may be reduced as follows: from (2.3) and (2.4), using (2.10), 

from (2.4) and (2.5), 

i€wpxv - iww + €(p + 2) y 

A t  this point we assume that R, tends neither to zero nor to infinity as c - f  0, 
sowe canrestrict attention tovaluesof Rsuch that bothR = O( 1) and 1/R = O(1). 
Such restrictions are physically plausible, since we do not expect instability to 
occur at  very low Reynolds numbers, but we do expect it to occur for some finite 
values of R, however small E is. In  any case, if we cannot find R, under these 
restrictions, we may relax them and try again. The right-hand sides of (2.11) 
and (2.12) are thus of order 6. 

Let us postulate asymptotic expansions for the dependent variables as E tends 
to zero: 

Y(X) = yo(x) [1 +o(l)l, 4%) = vo(x) [1 +o(l)l, W(X) = too(x) [1 +o(l)I, (2.13) 

in which we assert that yo, v,, and W,, are of the same order of magnitude. This 
assertion can be justified as follows: (i) we may assume that vo - yo (where 
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‘A - B’ means ‘A has the same order of magnitude as B when e+ O ’ ) ,  for, if 
yo = o(vo), say, then (2.10) requires wo - vojc. Then (2.12) either implies is - E ,  

in which case (2.11) gives wo = 0, or reduces to 

whose only solution both non-singular at  x = 0 and zero a t  x = 1 is wo = 0;  but 
wo = 0 means vo = 0, from (2.10), which contradicts the original assumption. 
The possibility vo = o(yo) is ruled out in the same way; (ii) similar arguments also 
rule out the possibility that wo is large (i.e. wo - v0/€ - yo/€). Hence wo = O(vo) ; 
(iii) however, if wo - eve, then (2.12) implies that W N 1, and so (2.11) reduces to 

~(xv,)’ + nyo/x = 0. 

Combining this with (2.10), which reduces to 

yh+invo = 0, (2.14) 

we conclude that there is no non-trivial solution for yo which can satisfy both 
boundary conditions. Thus yo = 0,  and again the original supposition is contra- 
dicted. Hence wo - vo - yo. 

If we now compare the second term in (2.12) with the other terms, we see that 
o - E ,  a conclusion which was also reached in the inviscid case (see Pedley 1968); 
so we define a quantity ol, of order one, such that W = col. 

The final set of equations governing the problem is now obtained by taking the 
leading term in each of (2.10), (2.11) and (2.12). (2.10) again reduces to (2.14); 
(2.1 1) is unchanged, apart from replacing W byEwl, and adding a suffix zero to the 
functions y, v, w; and in (2.12) both the first term on the left-hand side, and the 
second group of terms on the right-hand side, are to be neglected as being O(e2). 
If we eliminate vo from (2.11) and (2.12) by the use of (2.14), we arrive at the 
following pair of equations for yo and wo: from (2.11), 

iv 2 rrr 1+2n2 1+2n2 I n4-4n2 

- 

90 +;Yo - ~ - Y o + ~ Y o + ~ ? / o  

= R ( i o l ( y ~ + ; y ~ - d y o )  1 n2 -/3n2wo); (2.15) 

and, from (2.12), 
1 n2 
X X 2  

w;; + - w; - - wo = R{iwl wo - (p  + 2) yo>. (2.16) 

The number of independent parameters appearing in the problem can be 
reduced to two by suitable transformations, as follows. First, define a positive 

,a6 = R2n2IB(@+2)1. (2.17) quantity p such that 

(The cmes /? = 0 and p = - 2 will be treated separately.) Then define the 
quantities 

(2.18) 
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and rewrite (2.15) and (2.16) in terms of them as follows: 

(n4 - 4n2) 2 
X1 4 4 

(1 + 2n2) yi + (1 + 2n2) 
y$+-yy, -~ Yh+ x$ Yo 

If 1 n2 zo + - 2; - -2 = 02, - yosgn [p(p+ 2)]. x1 x; O 
(2.20) 

(The prime now denotes differentiation with respect to xl.) A final substitution, 
which renders equation (2.19) more manageable and points the way to an analytic 
solution in terms of Bessel functions, is 

whence (2.19) becomes 

( 2 Y”+- 1 Y’-  1 + -  Y = 8(Y-y,)-yo-z0. 
21 

(2.21) 

(2.22) 

The boundary conditions on yo(xl) and zo(xl) are easily obtained from (2.7) 

Yo(P) = Yh(,uu) = Z o ( l 4  = 0 (2.23 a)  
and yo(0) = zo(0) = 0 for n + 0, yh(0) = 0 for n + 0, 1 .  (2.23b) 

The problem is now seen as an eigenvalue problem for 19, with parameters n 
and p. An unstable disturbance is one which leads to a positive real part of 0, since 
6’ is proportional to i(a+nQ), and the condition for instability is Im(a)  < 0. 
Now, the critical Reynolds number R, which we are seeking is the lowest value 
of R leading to a solution with Im (r) = 0, that is Re (0) = 0; but the problem is 
expressed in terms of ,u, defined by (2.17), so we must first seek the lowest value 
of p, say pl(n), for which Re (8) = 0 for a given n, then we must vary p to obtain 
the lowest value of R for that p, and then we must repeat the calculation with 
different, non-zero, integral values of n. If p(p+2)  is negative, the value of p 
which leads to the lowest R for a given ,u and n is - 1 ; in that case 

and (2.8) by using (2.14) to eliminate wo. They are 

R, = min {Rl(n)), where R,(n) = [p1(n)I3/n. (2.24) 

If p(p + 2) is positive, the relevant value of p is infinite, so R, = 0 (remember that 
this conclusion, drawn from the approximate analysis, really means 22, = o( 1) as 
t: + 0). However, in Pedley (1968) it was shown that p(p + 2) had t o  be negative 
for an inviscid unstable disturbance, and in the next section we prove the same 
result in the present viscous case. 

As well as seeking R,, we are interested in the growth rates of unstable dis- 
turbancesfor R > R,, with a view t o  finding the most rapidlygrowing disturbance. 
If we define the growth rate as - Im (a), we can express it in terms of B by means 
of the transformations (2.2), (2.9), (2.18) and w = E W ~ :  

n 

2E*,u2Re(8) = -p2Re(8). V - Im(a)  = ~ 

R Ti? 
(2.25) 
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Thus, for a given R > R,, we wish to fkd the maximum of the quantity p 2  Re (8) 
as n and p are varied; and, since P(p+ 2 )  will be proved negative, the maximum 
of ,u for given n occurs when /3 = - 1. 

3. Proof that for unstable disturbances 8 is real and p(p+ 2) is 
negative 

Before we proceed with the explicit solution of the system (2.20)-(2.22)) it 
will be useful to prove the folIowing results concerning the eigenvalues 8 of the 
problem : 

(i) if /3(/3+ 2) < 0, then Im (8) = 0;  
(ii) if B(p+ 2) > 0,  then R,e (8) < 0. 

(iii) if /3(/3+ 2) = 0,  then Im (iwl) = 0, iw, < 0. 
We shall also prove 

(This cannot be expressed in terms of 6 because the transformations (2.18) break 
down when p = 0.) 

These results show that /3(/3+ 2 )  must be negative for an unstable disturbance, 
and that, in this case, 8 is real. Thus we can ignore complex values of 8 in the 
search for the critical values pl(n) of p; the relation (2.24) holds between R, and 
the quantities pl(n); and the expression (2.25) for the growth rate of an unstable 
disturbance becomes 

where ,u is given by (2.17) with /3 = - 1 for maximum growth rate at the given n. 
Also, unstable disturbances are stationary relative to a frame of reference 
rotating with the pipe’s angular velocity Q, since Im (8) cc Re (g+ nQ) = 0 for 
such disturbances. 

- Im (4 = (v/G) (p28), (3.1) 

Proof of (i) and (ii) 
Multiply (2.22) by xlgo (where a bar over a quantity denotes its complex con- 
jugate) and integrate with respect to x1 from 0 to p. After some manipulation, 
involving integration by parts and use of the boundary conditions (2.23)) we 
obtain 

The quantity B is strictly positive, since 

whence 

and B = 0 only if yo has the form A1&&+A2x-n, which is prohibited by the 
boundary conditions. 

Next we turn to equation (2.20). Multiply the complex conjugate of (2.20) by 
xlzo, and integrate from 0 top .  A single integration by parts results in 

~ ~ ~ z ~ ~ ~ d x ~ - s g n [ ~ 3 ( / 3 + 2 ) ]  (3.4) 
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where 

Finally, eliminate 

from (3.2) and (3.4), to obtain 

(i) When P(p+ 2) < 0, take the imaginary part of (3.5): 

Im(0)/Pxl(lY:12+g 0 1 I Y O l 2 +  lzo12)dx1 = 0, 

whence Im (8) = 0, since the integral is positive for a non-trivial solution. 
(ii) When p(p+2) > 0, take the real part of (3.5): 

whence Re (0) < 0, since B and C are both positive. 
(iii) The case p = 0 is not covered by the above analysis, and we must revert 

to equations (2.15) and (2.16). Prom its definition (2.17), ,u is zero if either n = 0, 
or R = 0, both of which we have excluded, or p(p+ 2) = 0. When p+ 2 = 0, we 
define 

and the equations reduce to (2.19), and (2.20) without its last term, with x, 8' 
in place of xl, I9 in each. Multiply the equivalent of (2.20) by xZ0, integrate from 
0 to 1 with respect to x, and obtain 

8' = iRw,, xo = -2Rn2w0, 

whence either zo = 0, or 8' is real and negative, If xo = 0, we may multiply (2.19) 
by xJo, integrate from 0 to 1, and obtain (cf. (3.2)) 

where B is defined as in (3.3), with 1 for LG and x for xl. Thus 8' is real and nega- 
tive. Similarly, when P = 0, we define 

8' = iRw,, z0 = w0/2R, 

and the equations become (2.19) without its last term, and (2.20) with -yo as 
its last term, and x,8' in place of x1,8 in each. In this case, multiplying the 
equivalent of(2.19) by xijo, and integrating from 0 to 1 with respect to  x, gives 
yo = 0 or 8' is real and negative. If yo = 0, (2.20) then implies that 8' is real and 
negative. Thus, if ,!I(/?+ 2) = 0, iw ,  is real and negative. 
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4. Solution of the eigenvalue problem 
The form of equations (2.20)-(2.22), and of the boundary conditions (2 .23b) )  

indicates that their complete solution might be obtainable in terms of Bessel 
functions of the first kind, of order n (the corresponding Bessel functions of the 
second kind would be prohibited by their singularity at  the origin). We therefore 
try a solution of the form 

y = aJn(Pxl), Yo = bJn(pz,), 20 = CJa(PZ1).  

The three equations are satisfied if 

(4.1) 
- ( l + p 2 ) a  = - b - c + O ( a - b ) ,  from (2.22). 

Note that we have taken p(p+ 2) to be negative, since only then can instability 
occur. The equations (4.1) for a, 6 ,  c are self-consistent if and only if the 3 x 3 
determinant of the coefficients of a, B ,  c is zero; that is, if and only i fp  satisfies an 
equation which can be reduced to 

(4.2) 

i -p2c = Oc+b, from (2.20), 
a = (1 -p2 )  b, from (2.21), 

pZ(p2 + 0)2 = 1. 

Equation (4.2) has six roots altogether; however, three of them are merely the 
negatives of the other three, and J,(pz) = ( - l ) ” . J , ( - p s ) ,  so without loss of 
generality we may choose the three roots with positive real parts. Since, for 
instability, 8 is real and positive, one of these roots, say p, ,  is real, and satisfies 

p;+Opl-  1 = 0. (4.3a) 

The other two roots, say p ,  and p 2 )  are complex conjugates, satisfying 

p;+0p2+ 1 = 0. (4.3b) 

The most general solution for yo and xo, then, which also satisfies the boundary 
We may take p ,  to have a (strictly) positive imaginary part. 

conditions (2.233) at x1 = 0, is 

YO = b l ~ ~ ( p l x ~ ) + b 2 J n ( p 2 z l ) + b 3 J n ( ~ 2 z l ) ,  

where use has been made of the first of equations ( 4 . 1 ) ,  and of both the relations 
(4.3). The boundary conditions (2.23a) at x1 = p (that is, 

YdP) = Y&) = Xo(P) = 0) 
can be simultaneously satisfied by the solutions (4.4), with non-zero values of 
b,, b,, b3, if and only if the quantities O and p are related by the determinantal 
equation 
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(p ,  and p2 being given by (4.3)). This equation is reducible to 

The lowest value of p corresponding to a neutral disturbance (8 = 0,  and hence 
from (4.3a) 21, = l), for a given n, is the first positive zero pul(n) of the function 
Fn(p, 0). (The solution p = 0 is excluded by $3.) Also, for a given n and R ( > RJ, 
and hence for a given p > pl(n), the highest growth rate is given by the largest 
value of 8 (and hence, from (4.3a), the smallest value ofp,) satisfying (4.5). Thus, 
for both 0 = 0 and y > pl(n), we seek the smallest value of ply for which (4.5) is 
satisfied. 

We may express (4.5) more concisely if we write p l p  = x (real) and p z p  = y 
(complex), and if we define the function 

Ln(z)  = zJA(z)/Jn(z)- (4.6) 

Thus (4.5) may be rewritten as 

#,(x) = Im {y~,(x) + (x + jj)~,(y)) = 0, (4.7) 

since y is itself a function of x, with strictly positive imaginary part, from (4.3) : 
in the case of neutral disturbances (# = 0, p = x) 

y = y#) = $x( 1 + i  43); (4.8a) 

and in the case of amplified disturbances (0 > 0; p, given, > p,(n)) 

(4.8b) 

In  both cases, we seek the first zero of @,(x). 

5. Results 
We first prove an analytical result, to wit that the first zero of F , ( x )  lies be- 

tween the first positive zero j,, of J,(x) and the second positive zero j ; ,  of 
JA(x). Clearly, there is a value of x between j,, and jw, (the second positive 
zero of Jn(x)) for which (4.7) is satisfied, since L,(x)+ +a as ~ + j , , ~ + ,  and 
L,(x) + - 03 as x +jn,2 - , and @,(x) is a continuous function for j,, < x < j,, 
(because y is complex, and all the zeros of Jn(z), i.e. all the singularities of L,(z), 
are real). 

To show that P,(x) has no zerosfor 0 < x < j, 1, let us express Jn(z) as an infinite 
product 

(Watson 1944, p. 498), where j,, is the 8th positive zero of Jn(x). Logarithmic 
differentiation of (5.1) yields 
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whence A, is positive for all s as long as 0 < x < j,,,, since y is a complex number 
with positive real and imaginary parts. Thus P,(x) is negative for all x less than 
Qn, ,, and so its first zero lies between j ,  , and jn, 2. Furthermore, the second term 
in the curly bracket of (5.2) is positive for all x, whence the second term in (4.7) is 
negative for all x, so that, at  the first zero of F , ( x ) ,  the first term in (4.7) must be 
positive. In  other words, this zero lies between j,,l and the first zero of L,(x) 
greater thanj,,,: that is, jh,2. 

This result not only provides a useful starting-point for the numerical com- 
putations which follow, but also enables us to make very simple asymptotic 
estimates of the interesting quantities, p,(n) and the dimensionless growth rate 
p20, for large values of n. 

(a) Critical Reynolds number 

For integer values of n between 1 and 10, the first positive zero pl(n) of EI,(p, 0) 
(see equation (4.5)) was computed numerically. This zero is known from the 
above to lie between j,,, and jL,2, so the method used was to  calculate Fn(p, 0) 
for a value of p (say po)  slightly greater than Q,, 1, then repeat with p = po + 0.1 , 
po+ 0.2, etc., until &(p, 0) changed sign, and then to use repeated linear inter- 
polation in order to  obtain pl(n). The process converged rapidly, and was 
terminated when pl(n) did not change to six significant figures. The subroutine 
used to calculate the Bessel functions (straightforward power series in the argu- 
ment) was itself accurate to six significant figures for the smaller values of n and 
the correspondingly modest values of pl(n), but for the larger values of n in the 
range 1-10, and the correspondingly large values of pl(n),  its accuracy was down 
to  three significant figures. The results are therefore given only to three sig- 
nificant figures, which is in any case quite sufficient for comparison with 
experiment. 

The results are given in table 1, where R,(n) is the Reynolds number corre- 
sponding to thegivenvaluesofn andp: R,(n) = p:(n)/n, from (2.24). The quantity 
pe(n) is defined below. We can also estimate R,(n) for values of n greater than 
10, because j,.l < pl(n) < jLm2, and we have the following asymptotic formulae 

(Olver 1960, equations (1.14) and (1.18)). Thus we can write 

p1(n) = n+k,n*+k,n-f+O(n-l), (5.4) 
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where k, and k,  are numbers which might depend on n, but which must lie in the 
ranges 1.856 < k ,  < 2.578; 1.033 < k, < 1.955. 

In fact, we can verify empirically that k,  and k,  are essentially independent of n. 
From (5.4), with n = 9 and n = 10 (neglecting the O(n-l) term), and taking the 
values of pl(9) and pl( 10) from table I., we obtain 

k,  = 1.95, k ,  = 1.74. (5.5) 

If we now substitute these values of k, and k, back into (5.4) with n = 1,2,  . . . , 8, 
we obtain estimates p,(n) for pl(n), which are also given in table 1. It can be seen 
that these estimates are accurate to three significant figures for n 2 6, and are 
even accurate to within 8 yo for n = 1, when the O(n-l) term is not negligible. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

PI@) 
4-36 
5.67 
6.91 
8.12 
9.31 

10.5 
11.6 
12.8 
13.9 
15.0 

TABLE 1 

R,W 
82.9 
91.0 

110 
134 
161 
191 
224 
260 
299 
338 

lu&) 

4.69 
5.84 
7.02 
8.19 
9.35 

10.5 
11.6 
12.8 
13.9 
15.0 

Thus (5.4) and (5.5) provide an excellent estimate for ,ul(n), and hence for R,(n), 
for essentially all n. The results taken together show that, for all n, R,(n) is a 
monotonically increasing function of n. Thus its least value, the critical Reynolds 
number R,, corresponds to an azimuthal wave-number n = 1, and has the value 

R, = 82.9. 

(b)  Most rapidly growing disturbance 
For given R > R,, we seek the largest non-dimensional growth rate ,u28 for all 
values of n such that R > R,(n), in order t o  see which wave-number corresponds 
to the most rapidly growing disturbance. The method is similar to that used in 
(a )  above. Given R and n, and hence also given p, we choose a value of p ,  (and 
hence, from (4.3), 8 and p ,  are likewise uniquely chosen) such that p,p is slightly 
larger thanj,,,, and we calculate &(p, 8) from (4.5). We then iterate as before to 
find the smallest value of p ,  for which i?,(p, 8) is zero. Finally, we calculate 8 
from (4.3u), and hence obtain p28. 

The values of R for which the computation was performed ranged from 100 to 
340 in steps of 20, and the values of n used did not exceed 9. The results are given 
in table 2. It can be seen that, when R = 100, p28 is greatest for n = 1 (the wave- 
number at which instability first becomes manifest as R is increased), but, for 
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R = 120 to 180, p28 is greatest for n = 2; for R = 200 to 320, p28 is greatest for 
n = 3 ;  and, for R = 340, p20 is greatest for n = 4. In  other words, as the Reynolds 
number increases, the wave-number of the most rapidly growing disturbance 
also increases. This ties in with the results for the inviscid case (see Pedley 1968), 
in which the growth rate -Im (a) increases with n for all n, to the limit 2efi 
(which, with (2.25), suggests that, in this case, max(p28) N R as R-too). In  the 

II n , = l  m = 2  n . = 3  

100 4.00 3.22 - 
120 8.76 10.5 4.33 
140 13.5 17.8 13.2 
160 18.4 25.1 22.1 
180 23.3 32.5 31.1 
200 28.1 39.9 40.0 
220 33.0 47.3 49.0 
240 38.0 54.7 58.1 
260 42.9 62-1 67.1 
280 47.8 69-6 76.1 
300 52.8 77.1 85.2 
320 57.7 84.5 94.3 
340 62.7 92-0 103 

7% = 4 'n. = 5 

- - 

2.98 - 
13.0 - 

23.1 10.2 
33.2 21.2 
43.3 32.1 
53.4 43.1 
63.6 54.1 
73.8 65.1 
83.9 76.2 
94.1 87-2 

104 98.3 

TABLE 2 

n = 6  

- 

- 

- 

- 

- 

4.97 
16.6 
28.3 
39.9 
51.6 
63.3 
75.0 
86.8 

n = 7  

- 

- 

- 

- 

- 

- 

- 
9-55 

21.8 
34.0 
46.2 
58.5 
70-8 

n = 8  m = 9  

- - 
0.979 - 

12.8 - 

25.5 1.39 
38.2 14-5 
50.9 27.6 

viscous case, clearly the growth rate at  first increases with n (for a given R),  
reaches a maximum, then decreases again to zero when R,(n) 2 R. The Reynolds 
numbers at which the most unstable wave-number changes from n = 1 to 2 , 2  to 
3 , 3  to 4 can be estimated from figure 1, which contains the information of table 2 
in the form of graphs of p28 against R for different values of n. The transitional 
Reynolds numbers are n = 1-2, R = 109, 

n = 2-3, R = 199, 
n = 3-4, R = 323. 

These transitions, too, we can estimate for large values of n with the help of the 
asymptotic formula (5.4). From (4.3a) we have 

where p1p might be expected to depend on both R and n. Now p3 = Rn, so only 
if p1p is independent of R will (5.6) represent a linear graph of p28 against R 
(for each n). But figure 1 shows that the graphs ofp28 against R are approximately 
linear for all n < 10, and p 1 p  N n for large n (from jn,, < pl,u < j& and (5.3)), 
so that pip, for each n, is the same for all R 2 R,(n), and hence for all 8 > 0. Now, 
when 8 = 0, p1p = p1(n), so that (5.6) becomes 
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Equations (5.4) and (5.5) can now be used to give the estimate ,ac(n) for pul(n), 
and then (5.7) gives an expression for the growth rate as a function of R and n 
which is accurate for all but the smallest values of n. The Reynolds number at  
which the growth rate for n = no+ 1 first exceeds that for n = no is obtained by 
equating the right-hand sides of (5.7) for the two values of n. For example, the 
transition from n = 3 to n = 4, calculated from (5.4), (5.5) and (5.7), occurs at  
R = 292, which represents an error of less than 10 yo, despite the small values of 

R 

FIGURE 1.  Growth rate vs. Reynolds number, for different values of n. Points in tho lower 
left corner lie on the exact curves, which deviate slightly from the straight lines for small 
n and R. 

n involved. Incidentally, if (5.7) is used with the correct values of pl(n), taken 
from table 1, the transition Reynolds number comes out as 3 11, an error of less 
than 4%; thus for best results the correct values of pl(n) should be used in 
(5.7) when they are known and differ from the asymptotic estimates (i.e. for 
n < 5 ) ,  but these estimates may be used for all n > 5. 

6. Discussion 
The principal result of this paper, that the basic flow is unstable to infinitesimal 

disturbances if E @ 1 and R > R, = 82.9, is a surprising one for two reasons. 
First, it is generally believed that non-rotating axisymmetric Poiseuille flow 

is stable to infinitesimal disturbances. This belief is based partly on a large body 
of experimental evidence (see, e.g. Leite 1959) which indicates that the Reynolds 
number, R,, a t  which transition to turbulence occurs increases without limit 
as the amplitude of the disturbance tends to zero (Leite achieved stability for R 
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as high as 13,000), and partly on the theoretical result that the flow is stable to 
axisymmetric infinitesimal disturbances for all values of R (Corcos & Sellars 
1959). That result is supplemented by further observations of Leite (1959) that 
the asymmetric part of a disturbance dies out more quickly than the symmetric 
part, although Fox, Lessen & Bhat (1968) have produced some evidence that 
non-axisymmetric disturbances (with n = & 1) are unstable for R > 2130. 

The real cause for surprise at the present results lies in a second widespread 
belief, to the effect that rotation always has a stabilizing effect, whereas here its 
effect is clearly destabilizing. White (1964), for instance, has observed that the 
flow resistance in turbulent pipe flow (for various values of R > 1000) is much 
reduced as the angular velocity of the pipe is increased. White did not remark on 
the effect of the rotation on R,, but the experiments of Cannon & Kays (1967) 
show that R, increases as the rotation increases. This observation appears to 
conflict drastically with the present theory. 

The resolution of the conflict must lie in the fact that the basic swirl velocity in 
the experiments cited was not approximately solid-body rotation. The inviscid 
analysis of Ludwieg (1961), who considers a flow confined to a cylindrical annulus 
in which the narrow gap approximation can be made, shows that a vanishingly 
small axial shear is sufficient to destabilize a pure, stable, swirling flow only if that 
flow is solid-body rotation. Ludwieg’s work was extended to viscous fluids by 
Kiessling (1963), who found that the critical’Reynolds number increases as the 
swirling flow deviates from solid-body rotation. Now, both White’s (1964) and 
Cannon & Kays’s (1967) experiments were conducted in rotating pipe sections a t  
the entrance to which the flow was non-rotating. It is certainly to be expected 
that in such a situation, if the flow is steady, then Poiseuille flow plus solid-body 
rotation will be the ultimate form of the motion far downstream, but there re- 
mains the question of how far downstream. 

If the rotation were weak, having little effect on the axial flow, the spread of 
axial vorticity through the fluid would follow the traditional pattern of a 
boundary layer whose thickness is of the order of (vx/Wo)*, where xis the distance 
downstream. Solid-body rotation will be set up when the thickness of the layer 
ha,s become comparable with the pipe radius: that is, when 

2 = O(W0T$/Y) = U(Rr*). 

The dynamics of this development is similar to that of the decay of weak rota- 
tion in a non-rotating pipe, described by Talbot (1954). However, when the 
rotation is strong, as in the situation envisaged here, there will be considerable 
interaction with the axial flow, and, only a short distance from the point of entry 
into the rotating section of pipe, the motion will be highly complex, dominated 
by rotation. A complete description of such motion, albeit steady and axi- 
symmetric, is not available, but a lower limit to the required downstream distance 
can be obtained by considering the decay of small deviations from solid-body 
rotation. 

Let the components of velocity be [u‘, Qtr + v‘, W,( 1 - r2/r$) + w’], where both 
E ( =  WJ2Qr0) is small, and lull = ( u ’ ~ + w ’ ~ + w ’ ~ ) &  < Qr0. Then all the inertia 
terms except those involving Q (the Coriolis force terms) may be neglected in the 
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equations of motion, and, if the pressure is eliminated between the axial and 
radial equations, we obtain 

a a 
- (2av’ + v(V2u’ - u’/r2)} = - (vV3w‘). 
ax ar 

The azimuthal and continuity equations are, respectively, 
251~‘ = v(V2v’ - v’/r2) 

and l a  aw’ 
r ar ax 
- - ( r d ) + - -  = 0. 

Let us consider the order of magnitude of the various terms in these equations, 
on the assumption that the length scale 1 of variations in the axial direction is 
much larger than r,. Denote the scale of a velocity component by square brackets 
round it. From (6.4), we have 

[a‘] = (r,/O[w’l < [w’l, 

so that (6.5) implies Q6 [v’] = __ [w‘]. vl 
Hence a balance of the leading terms on either side of (6.2) yields 

V [w’] = -[%!?‘I, 51 Qr: _-  __ 
1 vl 6 

or 1 = Qr:/v = O[Rr0/e]. 

Thus the length-scale over which deviations from solid-body rotation (with or 
without a weak Poiseuille flow superimposed) decay is of the order Rr,/s.t When 
E is small, this is an order of magnitude larger than the corresponding distance 
for weak rotation, given by (6.1) (such a result was to be expected because, in 
an inviscid fluid, strong rotation inhibits all steady axial variations, by the 
Taylor-Proudman theorem). If we assume that intermediate values of s result 
in intermediate axial length scales, then, however strong the rotation, uniform 
solid-body rotation cannot develop until a distance of order 1, has been travelled 
from the entry point, where 

I ,  = max [Rr,, Rr,/e]. (6.5) 

Now, in White’s (1964) experiments, the greatest length of rotating section was 
87in., ro was &in., and the minimum value of R at which experiments were 

t This scaling arises from the balance between viscous and Coriolis forces, and is often 
characteristic of shear layers parallel to the axis of rotation in a rotating fluid (see, for 
example, Herbert 1965; Stewartson 1966). 

The resulting decay problem can be solved quite simply by a separation of variables, 
which leads to an eigenvalue problem very similar to that solved in 4. The solution for the 
perturbation stream function p’ and swirl velocity w’, in the most slowly decaying mode, is 

= C exp (-/42/2Z)x (Jl(plz) -Jl(pl) Re E:;::]) * 

where z = r/r,,, w = exp ($in), C is 8 constant, and p1 is the &st zero of .Fl(p, 0) its defined 
by equation (4.5). Thus pl = pl(l) = 4.36. 
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reported was, as far as can be seen from the diagrams, about 600. Thus 1, was in 
all cases greater than looin., and solid-body rotation was presumably not 
attained. Also, White’s minimum value of E was greater than 0.1; most of the 
experiments were performed with values of E which were not small. Similarly, 
in Cannon & Kays’s (1967) experiments, the length of the rotating section was 
60in., r,, was 3 in., and the smallest value of R employed was 3000. Thus 
1, > 1500in., and again solid-body rotation could not develop. Thus the present 
theory is inapplicable to either of these sets of experiments. 

An experiment to test the theory could be performed in a pipe with a rotating 
section, as long as that section were long enough. One would start the section 
rotating with no through flow, and gradually increase the axial pressure gradient 
until R = 83 (the pipe must be rotating rapidly enough for E still to be small at 
this value of R). If E: = 0.1, say, and the internal radius of the pipe is 0.1 in., then 
instability should be observed at  a distance downstream of the order of 
83in. z 415 diameters. (We should not expect instability to occur before this, 
because of Kiessling’s (1963) result that the minimum critical Reynolds number 
corresponds to solid-body rotation.) Thus a rotating section at  least 100 in. 
long would be required. 

It might be hoped, too, that an experiment would test not only the result that 
R, w 83, but also the result that the azimuthal wave-number of the most rapidly 
growing disturbance increases as R increases. The instability first observed 
would take the form of a single spiral (n = 1) disturbance, which is fixed relative 
to the rotating pipe, and which twists in the opposite sense to the streamlines in 
the basic flow (because p = - 1, so that the axial wave-number 

k =  - mire = -e/r0). 

As R is increased beyond 109, the observed disturbance should jump to double 
spiral (n = 2) form. However, the experiment outlined above would not neces- 
sarily provide these observations, for as the Reynolds number is increased we 
should observe the point at which instability occurs move upstream, since flows 
which deviate more and more from solid-body rotation would become unstable. 
On the other hand, the growth rates of the mode of instability associated with the 
solid-body rotation might be so large that this mode dominates the disturbed 
motion, and can still be observed. Clearly, though, the problems involved in a 
complete test of the theory are formidable. 

It was remarked above that the unstable spiral disturbances, which would be 
observed in an experiment, twist in the opposite direction to the basic flow. 
Lambourne & Bryer (1962) observed just such a backwards spiral in vortex 
breakdown over a delta wing. This suggests that the present instability may be 
relevant to the theory of vortex breakdown (Ludwieg (1962) had the same idea). 
However, as Hall (1966) points out, such instability to infinitesimal disturbances 
can only be the first stage in the catastrophic changes, including stagnation of the 
axial flow, which are characteristic of true vortex breakdown. It will therefore 
be interesting, in the proposed experiment, to observe whether the form of the 
instability when its amplitude becomes large does indeed resemble the more 
familiar manifestations of vortex breakdown. 

8 Fluid Meoh. 35 
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I am indebted to Dr M. E. McIntyre for pointing out the equivalence demon- 
stratedin the appendix. This work was supported by the Ofice of Naval Research, 
Contract NONR 4010(02). 

Appendix. Demonstration that this instability is a type of inertial 
instability 

The classical example of inertial instability is that of pure swirling flow 
[O, V(r) ,O] in an inviscid fluid, investigated by Rayleigh (1916). The flow is 
unstable to axisymmetric disturbances (i.e. to disturbances whose wave- 
number vector k is parallel to the axis) if the square of the circulation anywhere 
decreases outwards; that is, if ( V/r2 )  d/dr ( Vr)  is anywhere negative. Thus, when V 
is everywhere positive, the flow is unstable if the axial vorticity (the component 
parallel to k) is anywhere negative. 

X 

FIGURE 2. Diagram showing the relationships between the vectors Q, U(y), and k in one 
particular flow exhibiting inertial instability. IU’I N slQ1. The two-dimensional analogue 
of the instability was deduced in Pedley (1968). 

The same mechanism is clearly responsible for the instability of a unidirec- 
tional shear flow U in a uniformly rotating fluid whose angular velocity B is 
perpendicular to the direction of variation of U. In  a system of rectangular 
Cartesian co-ordinates (z, y, z )  rotating with angular velocity S2 = (Ql, 0, Q3), 
we investigate the basic flow [U,(y),O,O] bounded by rigid planes at y = yl, 
y = y2. Consider a disturbance whose wave-number vector k = (0, 0, k )  is in the 
z-direction. The y-component of disturbance velocity may be written 

v(y) exp {i(d + kz)).  (A 1) 
The perturbation equations of motion reduce to the following single equation for 

2Q3k2(2Cl3- U:) 
cT2 

V” - k2v + 2, = 0, 



On the instability of viscous $ow 115 

subject to the boundary conditions v(yl) = v(yJ = 0. Sturm-Liouville theory 
tells us that there are negative eigenvalues for u2; that is there is instability if 

(A 3) 

for any y in (yl,y2). Thus the flow is unstable if the x-component of absolute 
vorticity (the component parallel to k) is anywhere negative. Note that the 
criterion (A 3) is independent of Ql, which may be arbitrarily large compared 
with Q3. 

This theory may be extended to show that the criterion (A 3) also results if 
there is a small z-component U3(y) of the basic velocity such that lU31 < IU,l 
(assuming, on the basis of (A 3), that I U; I and I Q3\ are of the same order of magni- 
tude). 

Figure 2 is a diagram of the (x,z)-plane, showing the vectors k, 8, U(y), in 
the particular case where U3(y) = eU1(y), Q3 = eQl, and B is sufficiently small that 
2Q3 < U i  somewhere. There is a basic flow U(y) parallel to the rotation vector Q, 
where IU’I N eIS21 (since I U;l N Q3 N elll), and there are unstable disturbances 
with wave-number k almost perpendicular to 8 such that the component parallel 
to k of the absolute vorticity in the basic flow is negative somewhere. Stated like 
that, this is clearly the two-dimensional analogue of the cylindrically symmetric 
problem solved in Pedley (1968). 

Q3(2Q3- u;, < 0 
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